

Contents list available at Science Letters

Science Letters

journal homepage: http://www.scienceletters.org/

Modeling and Comparative Analysis of Connecting ROD

Ajay Kumar Agarwal^{1*}, and Parvinder Bangar²

¹Mechanical Engineering Department, JB Knowledge Park, Faridabad (Delhi NCR), Haryana, India ²IITM Group of Institutions, Sonipat (Delhi NCR), Haryana, India

ARTICLE INFO

Article History Received 14April 2021 Revised 28 June 2021 Accepted 25 July 2021 Available Online 29 June 2021

Keywords: Connecting Rod, IC Engine, Mechanical Properties, Stress Analysis, ANSYS, 3D Model, CATIA V5.

1. INTRODUCTION

Introduction of Connecting Rod and Designing Software

The modern power train is right now being come up against a collection of conflicts with reference to emissions, fuel consumption and noise as well as vibration level. These collected conflicts have forced to establish the approaches that assure the appreciable fuel economy, depress the exhausted emissions along with high specific power that enhance the mechanical performance of the engine through the development of light weight of engine with its parts. The stress analysis of a connecting rod of an engine would contribute a worthwhile conceptual justification for the weight reduction and improvement of engine design. Based on these analysis results, the conceptual ideas have been developed which reduces the weight of the connecting rod to a possible extent, without affecting the performance of

*Corresponding Author: Ajay Kumar Agarwal E-mail Address: ajaymechengineer@gmail.com DOI: 10.46890/SL.2020.v02i06009

© 2021 by the authors. The license of Science Letters. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons org/licenses/by/4.0/).

ABSTRACT

A Connecting Rod is one of the most important components of an IC Engine of a vehicle. After considering the mechanical property of a connecting rod, it directly influence the trust ability and longevity of the engine, the rigidity of the connecting rod acted upon the alternative applied loads which must be guaranteed in its design. So it is required very much to untangle the model of connecting rod through the stress analysis using ANSYS software. In this paper, firstly the 3D models of this engine part are built in the software "CATIA V5" and are then transferred to "ANSYS". The analysis of a connecting rod throws distortion and stress analytically which provides a conceptual support to enhance the design by weigh reduction.

the engine of a vehicle.

In the present work, the analysis techniques use multibody simulation tools for accurately predicting the operating loads practically acting on the engine components. The 3D model of a connecting rod system, obtained from CATIA V5 software, is analyzed in multibody dynamics simulation software named ADAMS/VIEW to assess the motion and loads acting on a connecting rod of an engine. Finite element model of the connecting rod from HYPERMESH is exported to ANSYS for Static analysis through which the deformation and stress distribution on the connecting rod of an engine is to be determined.

Importance and Application of Connecting Rod

It is called the Backbone of an engine of a vehicle. There is a very much importance of a Connecting Rod in an engine. Connecting Rod rotates the crank shaft which helps the engine to move on or any vehicle to rotate its wheels. The purpose of a Connecting Rod is to provide fluid movement between the piston and crank shaft.

Importance of Designing Software for Connecting Rod

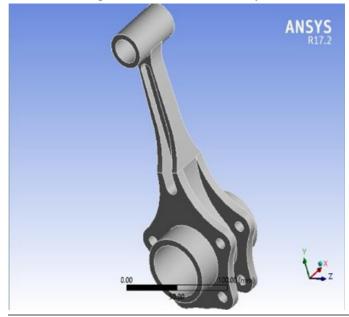
A Connecting Rod is a Shaft which connects a piston to a crank or a crank shaft in reciprocating engine of a vehicle.

Together with the crank, it forms a simple mechanism that converts reciprocating motion into rotating motion of a vehicle. Earlier mechanism, such as the chain, could only impart pulling motion. Being rigid, a Connecting Rod may transmit either a push or a pull, allowing the Connecting Rod to rotate the crank through both halves of a revolution. In a few two- stroke engines the Connecting Rod is only required to push a vehicle.

So the designing of connecting is very important for the working of engine or a reciprocating engine of a vehicle.

Analysis of Connecting Rod in ANSYS

Finite Element Method


In present analysis Finite Element Method (FEM) is a numerical method for estimate the stress in a connecting rod. For designing the connecting rod with optimum economical cost and limitations, the numerical simulation is the best tool. Finite element analysis provides a way for easy and inexpensive study of random pairs of input parameters along with the design conditions and manufacturing conditions to be evaluated.

Model Construction

The connecting rod created in designing software CATIA V5 through reverse engineering technique has been exported to multibody dynamics simulation software named ADAMS/ VIEW environment to perform the kinematic as well as dynamic analysis to determine the displacements, velocities, accelerations and forces acting on each of the part of a Connecting Rod. Dynamic simulations were carried out in ADAMS at varying speeds and applied loads to determine the above mentioned effects. The FE model created was subjected to static structural analysis after assigning suitable material properties and boundary conditions.

Importing Connecting Rod model to ANSYS.

Firstly, simplifying the model of the connecting rod in the stress analysis it is necessary to use the computer resources. The designing model was generated by CATIA V5 software. Few small design features that had hardly affect for the

simulation outcomes, like rounding chamfering and filleting features, were abridged in the model. Then the model was imported to ANSYS software for final dynamics simulation.

Testing Process of Connecting Rod Model to ANSYS.

Units.

	TABLE 1
Unit System	Metric (mm, kg, N, s, mV, mA) Degrees rad/s Celsius
Angle	Degrees
Rotational Velocity	rad/s
Temperature	Celsius

Model (A4): Geometrical Aspect.

ry

	TABLE 2 Model (A4) > Geometry
Object Name	Geometry
State	Fully Defined
	Definition
Source	C:IUsers\sharma\Desktop\fem analysis of student\manish itr.IGS
Type	Iges
Length Unit	Meters
Element Control	Program Controlled
Display Style	Body Color
	Bounding Box
Length X	96. mm
Length Y	285.5 mm
Length Z	112. mm
	Properties
Volume	3.15e+005 mm*
Mass	2.268 kg
Scale Factor Value	1.
	Statistics
Bodies	1
Active Bodies	1
Nodes	3621
Elements	1713
Mesh Metric	None
	Basic Geometry Options
Solid Bodies	Yes
Surface Bodies	Yes
Line Bodies	No
Parameters	Independent
Parameter Key	ANS:DS
Attributes	No
Named Selections	No
Material Properties	No
	Ivanced Geometry Options
Use Associativity	Yes
Coordinate Systems	No
Reader Mode Saves Updated File	No
Use Instances	Yes
Smart CAD Update	Yes
Compare Parts On Update	No
Attach File Via Temp File	Yes
Temporary Directory	C:\Users\sharma\AppData\Local\Temp
Analysis Type	3-D
Mixed Import Resolution	None
Decompose Disjoint Geometry	Yes
nclosure and Symmetry Processing	Yes

Table 3. Geometry and Properties of Connecting Rod

Basic Ge	ometry Information
Object Name	Part 1
State	Meshed
Gra	phics Properties
Visible	Yes
Transparency	1
	Definition
Suppressed	No
Stiffness Behavior	Flexible
Coordinate System	Default Coordinate System
Reference Temperature	By Environment

Ajay Kumar Agarwal et al., / Science Letters (2021)

continued..

Behavior	None
Mate	rial
Assignment	Gray Cast Iron
Nonlinear Effects	Yes
Thermal Strain Effects	Yes
Boundi	ng Box
Length X	96 mm
Length Y	285.5 mm
Length Z	112 mm
Prope	rties
Volume	3.15e+005 mm^3
Mass	2.268 kg
Centroid X	-3.8888e-003 mm
Centroid Y	42.73 mm
Centroid Z	-1.8351e-004 mm
Moment of Inertia Ip1	13702 kg.mm ²
Moment of Inertia Ip2	1951.6 kg.mm*2
Moment of Inertia Ip3	13612 kg.mm*2
Stati	sties
Nodes	3621
Elements	1713
Mesh Metric	None

Virtual Topology.

TABLE 4	
Model (A4) > Virtual Cel	ls
Object Name	Virtual Topology
State	Fully Defined
Definition	
Method	Automatic
Behavior	Low
Advanced	
Generate on Update	No
Simplify Faces	No
Merge Face Edges	Yes
Lock Position of Dependent Edge Splits	Yes
Statistics	
Virtual Faces	22
Virtual Edges	36
Virtual Split Edges	0
Virtual Split Faces	0
Virtual Hard Vertices	0
Total Virtual Entities	58

Coordinate System.

TABLE 5 Model (A4) > Coordinate Systems > Coordinate System

Object Name	Global Coordinate System
State	Fully Defined
De	finition
Туре	Cartesian
Coordinate System ID	0.
(Drigin
Origin X	0. mm
Origin Y	0. mm
Origin Z	0. mm
Directio	onal Vectors
X Axis Data	[1. 0. 0.]
Y Axis Data	[0.1.0.]
Z Axis Data	[0.0.1.]

Mesh.	
TABLE 6	
Model (A4) > Mesi	n in the second s
Object Name	
State	Solved
Display	
Display Style	Body Color
Defaults	
Physics Preference	Mechanical
Relevance	0
Shape Checking	Standard Mechanical
Element Midside Nodes	Program Controlled
Sizing	
Size Function	Adaptive
Relevance Center	Coarse
Element Size	Default
Initial Size Seed	Active Assembly
Smoothing	Medium
Transition	Fast
Span Angle Center	Coarse
Automatic Mesh Based Defeaturing	On
Defeature Size	Default
Minimum Edge Length	1.41420 mm
Inflation	
Use Automatic Inflation	None
Inflation Option	Smooth Transition
Transition Ratio	0.272
Maximum Layers	5
Growth Rate	1.2
Inflation Algorithm	Pre
View Advanced Options	No
Advanced	
Number of CPUs for Parallel Part Meshing	Program Controlled
Straight Sided Elements	No
Number of Retries	Default (4)
	Dimensionally Reduced
Mesh Morphing	
Triangle Surface Mesher	Program Controlled
Topology Checking	No
Pinch Tolerance	Please Define
Generate Pinch on Refresh	No
Statistics	1
Nodes	3621
Elements	1713
Mesh Metric	None

Static Structural.

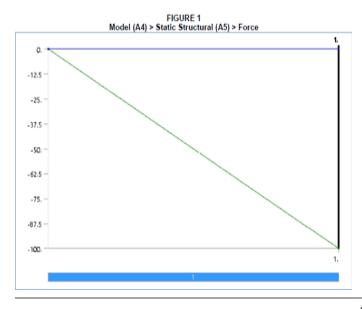

TABLE < Model (A4)	Analysis
Object Name	Static Structural (A5)
State	Solved
Definiti	on
Physics Type	Structural
Analysis Type	Static Structural
Solver Target	Mechanical APDL
Options	
Environment Temperature	22. °C
Generate Input Only	No

	TABLE 8 Model (A4) > Static Structural (A5) > Analysis Settings
Object Name	Analysis Settings
State	Fully Defined
	Step Controls
Number Of Steps	1.
Current Step Number	1.
Step End Time	1.s
Auto Time Stepping	Program Controlled
	Solver Controls
Solver Type	Program Controlled
Weak Springs	Off
Solver Pivot Checking	Program Controlled
Large Deflection	Off
Inertia Relief	Off
	Restart Controls
Generate Restart Points	Program Controlled
Retain Files After Full Solve	No
	Nonlinear Controls
Newton-Raphson Option	
Force Convergence	
Moment Convergence	
Displacement Convergence	Program Controlled
Rotation Convergence	Program Controlled
Line Search	Program Controlled
Stabilization	Off
	Output Controls
Stress	Yes
Strain	Yes
Nodal Forces	No
Contact Miscellaneous	No
General Miscellaneous	No
Store Results At	All Time Points
	Analysis Data Management
Solver Files Directory	C:\Users\sharma\Desktop\fem analysis of student\connecting rod analysis_files\dp0\SYS\MECH
Future Analysis	None
Scratch Solver Files Directory	
Save MAPDL db	
Delete Unneeded Files	Yes
Nonlinear Solution	
Solver Units	Active System
Solver Unit System	nmm

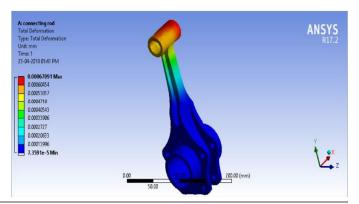
TABLE 9

Model (A4) > Static Structural (A5) > Loads

moderf		a had a reading
Object Name	Frictionless Support	Force
State	Fully Defined	
	Scope	
Scoping Method	Geome	try Selection
Geometry	1 Face	
	Definition	
Type	Frictionless Support	Force
Suppressed		No
Define By		Components
Coordinate System		Global Coordinate System
X Component		0. N (ramped)
Y Component		-100. N (ramped)
Z Component		0. N (ramped)

TABLE 10 Model (A4) > Static Structural (A5) > Solution

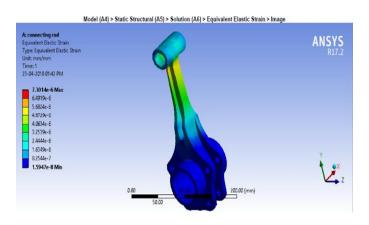
Object Name	Solution (A6)
State	Solved
Adaptive Mesh Re	
Max Refinement Loops	1.
Refinement Depth	2.
Informatio	n
Status	Done
MAPDL Elapsed Time	11. s
MAPDL Elapsed Time MAPDL Memory Used	
	265. MB
MAPDL Memory Used	265. MB 1.6875 MB


TABLE 11 Model (A4) > Static Structural (A5) > Solution (A6) > Solution Information

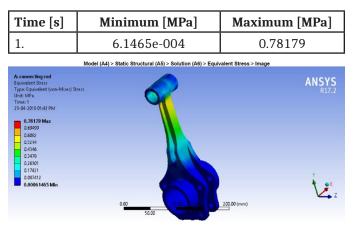
Object Name	Solution Information
State	Solved
Solution Inform	ation
Solution Output	Solver Output
Newton-Raphson Residuals	0
Identify Element Violations	0
Update Interval	2.5 s
Display Points	All
FE Connection Visibility	
Activate Visibility	Yes
Display	All FE Connectors
Draw Connections Attached To	All Nodes
Line Color	Connection Type
Visible on Results	No
Line Thickness	Single
Display Type	Lines

TABLE 12 Model (A4) > Static Structural (A5) > Solution (A6) > Results

Object Name	Total Deformation	Equivalent Elastic Strain	Equivalent Stress
State	Solved		
		Scope	
Scoping Method	Geometry Selection		
Geometry		All Bodies	
		Definition	
Туре	Total Deformation		Equivalent (von-Mises) Stress
By		Time	
Display Time		Last	
Calculate Time History	Yes		
Identifier			
Suppressed	No		
	Results		
Minimum	7.3591e-005 mm	1.5947e-008 mm/mm	6.1465e-004 MPa
Maximum	6.7091e-004 mm	7.3014e-006 mm/mm	0.78179 MPa
Minimum Occurs On	Part 1		
Maximum Occurs On	Part 1		
		Information	
Time	1. s		
Load Step	1		
Substep	1		
Iteration Number	1		
	v	ation Point Results	
Display Option	Averaged		
Average Across Bodies	No		


Total Deformation Analysis.

Strain Analysis.


Table 13. Model (A4) > Static Structural (A5) > Solution(A6) > Equivalent Elastic Strain

Time	Minimum [mm/	Maximum [mm/
[s]	mm]	mm]
1.	1.5947e-008	7.3014e-006

Stress Analysis.

Table 14. Stress Data for Stress Analysis

Material Data (Gray Cast Iron) & (Magnesium Alloy).

Table 15. Gray Cast Iron > Constants < Magnesium Alloy

Density	7.2e-006 kg mm^- 3	1.8e-006 kg mm^-3	
Coefficient of Thermal Expansion	1.1e-005 C^-1	2.6e-005 C^-1	
Specific Heat	4.47e+005 mJ kg^- 1 C^-1	1.024e+006 mJ kg^-1 C^-1	
Thermal Conductivity	5.2e-002 W mm^-1 C^-1	0.156 W mm^-1 C^-1	
Resistivity	9.6e-005 ohm mm	7.7e-004 ohm mm	

Table 16. Color

Material	Red	Green	Blue
Gray cast Iron	161	161	161
Magnesium Alloy	235	234	183

Table 17. Compressive Ultimate Strength

Material	Compressive Ultimate Strength MPa
Gray Cast Iron	820
Magnesium Alloy	0

Table 18. Compressive Yield Strength

Material	Compressive Yield Strength MPa
Gray Cast Iron	0
Magnesium Alloy	193

Table 19. Tensile Yield Strength

Material	Compressive Tensile Yield Strength MPa
Gray Cast Iron	0
Magnesium Alloy	193

Table 20. Tensile Ultimate Strength

Material	Tensile Ultimate Strength MPa
Gray Cast Iron	240
Magnesium Alloy	255

 Table 21. Isotropic Secant Coefficient of Thermal Expansion

Material	Zero- Thermal-Strain Reference Temperature °C
Gray Cast Iron	22
Magnesium Alloy	22

Table 22. Isotropic Elasticity

Material	Young's Modulus MPa	Poisson's Ratio	Bulk Modulus MPa	Shear Modulus MPa
Gray Cast Iron	1.1e+005	0.28	83333	42969
Mag- nesium Alloy	45000	0.35	50000	16667

 Table 23. Isotropic Relative Permeability

Material	Relative Permeability
Gray Cast Iron	10000
Magnesium Alloy	10000

CONCLUSION

In this research paper, we have performed the stress, strain and deformation analysis of a Connecting Rod of an I.C. Engine of a Vehicle. We have considered the Connecting Rod because it is one of the most important parts of an IC Engine and whose deformation may cause malfunctioning of an I.C.

Engine.

In this research paper we have also compared the manufacturing materials like Grey Cast Iron and Magnesium Alloy of a Connecting Rod for a better decision on selection of a production material of a Connecting Rod.

After research and comparative analysis, we can conclude the main result of this research paper on behalf of below mentioned points:

1) As per the comparative study on behalf of Factory of Safety of a Material, we have first concluded that the production material named Grey Cast Iron plays an important role in comparison of Magnesium Alloy during manufacturing process of a Connecting Rod.

2) Finally we concluded that the Grey Cast Iron has better property and performance than Magnesium Alloy on the aspects of various mechanical properties like stress, strain and deformation, which will always play a major role of safety of production material during manufacturing of a Connecting Rod and also after manufacturing regarding life safety during its utilization by a human life.

REFERENCES

[1] Abad, Mohammad Reza Asadi Asad et al. "Dynamic load Analysis and Optimization of Connecting Rod of Samand Engine" published in Australian Journal of Basic and Applied Sciences, 5(12): 1830-1838, 2011.

- [2] Ganesan, V. "Internal Combustions" published by Tata McGraw Hill Education Private Ltd., New Delhi with Edition of 2012.
- [3] Gupta, H. N. "Fundamentals of Internal Combustions Engines" published by PHI Learning Private Limited, Delhi with Edition of 2013.
- [4] Heywood, John B. "Internal Combustions Engines Fundamentals" published by McGraw Hill Professional with Edition of 1988.
- [5] Lawrence, Kent. L. "Ansys Workbench Tutorial Release 14" published by Schroff Development Corporation with Edition of 2012.
- [6] Moaveni, Saeed. "Finite Element Analysis" published by Dorling Kindersley (India) Pvt. Ltd. with Edition of 2011.
- [7] Plantenberg, Kirstie, "Introduction to Catia V5 Release 19" published by Schroff Development Corporation with Edition of 2009.
- [8] Pundir, B. P. "IC Engines: Combustion and Emissions" published by Alpha Science International Ltd. with Edition of 2010.
- [9] Rajput, R. K. "Internal Combustion Engines" published by Laxmi Publications (P) Ltd., New Delhi with Edition of 2005.
- [10] Ross, Emmett. "Catia V5 Tips & Tricks" published by VB SCRIPTING FOR CATIA V5 with Edition of 2015.
- [11] Stotsky, Alexander A. "Automotive Engines: Control, Estimation, Statistical Detection" published by Springer Science & Business Media - Technology & Engineering with Edition of 2009.